rustracer/src/material.rs

125 lines
3.7 KiB
Rust
Raw Normal View History

2022-06-30 07:54:25 +00:00
use rand::Rng;
use crate::hittable::HitRecord;
use crate::{Color, Ray, Vec3};
pub trait Scatterable {
fn scatter(&self, ray: &Ray, hit_record: &HitRecord) -> Option<(Option<Ray>, Color)>;
}
#[derive(Debug, Clone)]
pub enum Material {
Lambertian(Lambertian),
Metal(Metal),
Dielectric(Dielectric)
}
impl Default for Material {
fn default() -> Self {
Material::Lambertian(Lambertian::new(Color::default()))
}
}
impl Scatterable for Material {
fn scatter(&self, ray: &Ray, hit_record: &HitRecord) -> Option<(Option<Ray>, Color)> {
match self {
Material::Lambertian(l) => l.scatter(ray, hit_record),
Material::Metal(m) => m.scatter(ray, hit_record),
Material::Dielectric(d) => d.scatter(ray, hit_record)
}
}
}
#[derive(Debug, Clone)]
pub struct Lambertian {
pub albedo: Color
}
impl Lambertian {
pub fn new(albedo: Color) -> Self {
Lambertian { albedo }
}
}
impl Scatterable for Lambertian {
fn scatter(&self, ray: &Ray, hit_record: &HitRecord) -> Option<(Option<Ray>, Color)> {
let mut direction = hit_record.normal + Vec3::random_unit_vector();
if direction.near_zero() {
direction = hit_record.normal;
}
let scattered = Ray::new(hit_record.point, direction);
Some((Some(scattered), self.albedo))
}
}
#[derive(Debug, Clone)]
pub struct Metal {
pub albedo: Color,
pub fuzz: f64
}
impl Metal {
pub fn new(albedo: Color, fuzz: f64) -> Self {
Metal {
albedo,
fuzz: if fuzz < 1.0 { fuzz} else { 1.0 }
}
}
}
impl Scatterable for Metal {
fn scatter(&self, ray: &Ray, hit_record: &HitRecord) -> Option<(Option<Ray>, Color)> {
let reflected = ray.direction().unit_vector().reflected(&hit_record.normal);
let scattered = Ray::new(
hit_record.point,
reflected + self.fuzz * Vec3::random_in_unit_sphere());
if scattered.direction().dot(&hit_record.normal) > 0.0 {
Some((Some(scattered), self.albedo))
} else {
None
}
}
}
#[derive(Debug, Clone)]
pub struct Dielectric { // Glass
pub index_of_refraction: f64
}
impl Dielectric {
pub fn new(index_of_refraction: f64) -> Self {
Dielectric { index_of_refraction }
}
fn reflectance(cosine: f64, ref_idx: f64) -> f64 {
let r0 = (1.0-ref_idx) / (1.0+ref_idx);
let r0 = r0*r0;
r0 + (1.0-r0)*((1.0-cosine).powi(5))
}
}
impl Scatterable for Dielectric {
fn scatter(&self, ray: &Ray, hit_record: &HitRecord) -> Option<(Option<Ray>, Color)> {
let color = Color::new(1.0, 1.0, 1.0);
let refraction_ratio = if hit_record.front_face {
1.0/self.index_of_refraction
} else {
self.index_of_refraction
};
let unit_direction = ray.direction().unit_vector();
let cos_theta = ((-unit_direction).dot(&hit_record.normal)).min(1.0);
let sin_theta = (1.0 - cos_theta*cos_theta).sqrt();
let cannot_refract = refraction_ratio * sin_theta > 1.0;
let reflectance = Dielectric::reflectance(cos_theta, refraction_ratio);
let mut rng = rand::thread_rng();
if cannot_refract || reflectance > rng.gen::<f64>() {
let reflected = unit_direction.reflected(&hit_record.normal);
let reflected = Vec3::new(-reflected.x(), reflected.y(), -reflected.z());
let scattered = Ray::new(hit_record.point, reflected);
Some((Some(scattered), color))
} else {
let direction = unit_direction.refract_orig(&hit_record.normal, refraction_ratio);
let scattered = Ray::new(hit_record.point, direction);
Some((Some(scattered), color))
}
}
}